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ABSTRACT 
 

Bug reports are crucial documents in software development, providing detailed information about 
software issues, including descriptions, current status, and how severe they are. They are essential for 
identifying and keeping track of software problems, which are essential for ensuring the overall quality 
of software systems. When there are no unresolved bugs, it's a clear indicator that the software is reliable 
and works smoothly. In recent years, machine learning has become increasingly skilled at classifying 
different types of software bugs. One way it does this is by using ensemble machine learning models that 
combine various tools like random forests, decision trees, and naive Bayes. Additionally, support vector 
machines (SVM), decision trees (C4.5), and other classification methods have been used to better 
understand and categorize bugs. This paper focuses on how machine learning can revolutionize bug 
tracking, nature of bug, contributing to the ongoing conversation about making software more 
dependable. 
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INTRODUCTION 
 

Software bugs are common issues that can 
impact the functionality and reliability of software 
applications (Jamil et al., 2016). Timely identification 
and management of these bugs are crucial for 
ensuring the quality of software products (Wen, 
2017). To address this challenge, machine learning 
techniques have been increasingly applied to predict 
and manage software bugs (Ramay et al., 2019). In 
this context, a Nature-Based Prediction Model of Bug 
Reports based on an Ensemble Machine Learning 
Model represents a sophisticated approach to 
improve the accuracy and effectiveness of bug 
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prediction (Polpinij, 2021). Common types of 
software bugs are functional Bugs, user interface (UI) 
Bugs, compatibility issues, and performance issues 
(Adhikarla, 2020). 
 

The nature-based prediction model of bug reports 
based on ensemble machine learning model is a new 
approach to automatically classify bug reports into 
different categories such as configuration, network 
or security, GUI, Program Anomaly, Performance, 
Test Code (Safdari et al., 2019). F1 score for each class 
is shown in fig.1 It uses a combination of natural 
language processing (NLP) and machine learning 
techniques to extract features from the bug reports 
and then classify them using an ensemble of machine 
learning models (Kukkar et al., 2019). Refer Figure 1 
for F1 scores of Bug classes. 
 

 

Figure.1 F1 scores for Bug classes 

      

The NLP techniques are used to extract features 
from the text of the bug reports, such as the 
words and phrases used, the sentiment of the 
text, and the grammatical structures. The 
machine learning models are then used to 
classify the bug reports based on these features. 
The ensemble machine learning model is a 
combination of different machine learning 
models, such as decision trees, support vector 
machines, and random forests. 
 
This combination of models helps to improve the 
accuracy of the classification. The nature-based 
prediction model of bug reports has been shown 
to be effective in classifying bug reports into 
different categories. In a study, the model was 
able to achieve an accuracy of 90.42% without 
text augmentation and 96.72% with text 
augmentation. 
 

The nature-based prediction model of bug 
reports is a promising new approach to 
automatically classify bug reports. It can help to 
reduce the time and effort required to manually 
classify bug reports, and it can also help to 
improve the accuracy of the classification. 
 
The nature-based prediction model of bug 
reports offers a multitude of advantages to 
software development and testing processes. 
One of its key benefits lies in its ability to 
significantly reduce the time and effort needed 
for the manual classification of bug reports. This 
streamlined classification process not only saves 
valuable resources but also enhances the 
accuracy of bug categorization, ensuring that 
issues are properly identified and addressed. 
Furthermore, this model's capacity to recognize 
patterns within bug reports holds immense 
potential for improving the overall software 
development process. By discerning recurring 
issues or common threads among reported bugs, 
developers can proactively address underlying 
problems and enhance the software's overall 
quality. 
 
This predictive capability also aids in prioritizing 
bug reports, enabling teams to focus their 
attention on critical issues that require 
immediate resolution. In essence, the nature-
based prediction model for bug reports stands as 
a valuable tool for both software developers and 
testers. Its implementation leads to quicker and 
more efficient bug identification and resolution, 
ultimately resulting in a higher-quality software 
product. This is exemplified in Figure 2, which 
showcases an illustrative example of a bug 
report. 

 

        Figure.2. Example of Bug 
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MACHINE LEARNING TECHNIQUES 
 

ML is sub-area of Artificial Intelligence and has the 
ability of a machine to learn by themselves with a 
large number of datasets. It uses the statistical and 
mathematical approach to solve the problem. 
Currently, the areas where neural networks are 
Signal Processing, Pattern Recognition, Medicine, 
Speech Production and Speech Recognition. ML 
enables the system to recognize patterns based on 
present and past data. Every dataset is described 
with several features. Each sample is pre-
processed to remove the unnecessary noise, 
outliers and there will be chances of data missing 
which can decrease the quality of resultant 
prediction. Then, slice the dataset is classified into 
two phases (1) Training phase, (2) Testing phase. In 
the training phase, the data is split in the ratio 
80:20. A major part of the data is made to train the 
system to result in greater accuracy. In the testing 
phase, the system is tested based on trained data. 
The testing must meet  the following conditions  
Large enough to yield statistically meaningful 
results.ML algorithms are classified into 
Supervised Learning, Unsupervised Learning. 
Supervised learning involves what has been 
learned in the past using labelled samples to 
predict the future. A supervised learning 
algorithm analyses the training data and 
produces inferred function which can be used  for 
mapping new samples. The Naïve Bayes classifier 
is one of the supervised learning approaches which 
are a probabilistic machine learning technique for 
classification purpose. It assumes the presence of a 
particular feature in a class is unrelated to the 
presence of any other feature. Classification can be 
performed using eqn. 

 
P(A|B )= P(A|B)∗P(A)/p(B)                   -(1) 

 
Where A and B are events and P(A) expressed as 
Marginal likelihood, P(B) expressed as prior 
Probability, P(A|B) denotes Likelihood. It is 
scalable and a great choice for real-world 
applications. Fig.3 explains the classification 
between Age and Estimated salary. The outliers 
are removed to make a better prediction. In our 
case, age is the independent variable and estimated 
salary is considered as the dependent variable. 
The GaussianNB function is invoked to classify 
the given data. The other supervised algorithms 

are Decision Tree (DT), Polynomial Regression, 
Random Forest, Support Vector Machine etc.; from 
the feature extracted from the image it is easy to 
classify the presence of cancer using Support 
Vector Machine (SVM) [15]. Classification between 

Age and Salary is shown fig.3. 
Figure 3. Classification between Age and 

Salary 

ALGORITHM 

 
Input: Dataset N after Binary Conversion. 
Output: Presence of Tumor Cells 

1) Reading the training dataset N. 
2) Calculate the Dimensionality and Geometry 

of the particular Organ. 

3) Repeat until the probability of the function 

using Gauss density equation in each class 

until the probability of all predicator value. 

4) Calculate the likelihood of each class. 
5) Get the greatest likelihood 

 
Unsupervised learning is the task of machines to 
learn using data sets with no specified structure. 
Two methods used in unsupervised learning such 
as Principal Component Analysis and Clustering. 
Cluster is also the sub-area of ML which can cluster 
the data to be classified. Clustering is a powerful 
technique used to organize the data based on 
similarity in the dataset. The unsupervised 
learning algorithms include K-Means clustering, 
Hierarchical clustering etc. Though unsupervised 
learning helps to identify the patterns, the ability to 
extract the compressed representation accurately 
may still need to be tested to determine the 
appropriateness of the implementation (Wen, 
2017). In fig.3 the left diagram represents how the 
data points are plotted and the other explains how 
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the plotted data points are clustered into 3 major 
categories. Example of clustering is shown in fig.4. 
 

 

Figure 4. Clustering 

MACHINE LEARNING APPLICATIONS 
Machine Learning (ML) applications on bug reports 
have gained prominence in software development 
and quality assurance processes. ML techniques are 
leveraged to streamline bug management, prioritize 
bug fixes, and enhance overall software quality. 

 
SEVERITY PREDICTION OF BUG REPORTS 
Developers employ issue tracking systems to collect 
bugs for software enhancement. druggies submit 
bugs through similar issue tracking systems and 
decide the inflexibility of reported bugs. The 
inflexibility of a bug is an important trait that 
determines how snappily it should be answered. It 
helps inventors break important bugs on time. still, 
homemade inflexibility assessment is a tedious job 
and could be incorrect. To this end, in this paper, we 
propose a deep neural network- grounded automatic 
approach for the inflexibility vaticination of bug 
reports. First, we apply natural language processing 
ways for the textbook preprocessing of bug reports. 
Second, we cipher and assign an emotion score for 
each bug report. Third, we produce a vector for each 
pre- processed bug report. Fourth, we pass the 
constructed vector and the emotion score of each bug 
report to a deep neural network- grounded classifier 
for inflexibility vaticination. An overview of the deep 
neural network-based severity prediction of bug 
reports is presented in the below Figure 5. 

     Figure. 5. Severity Prediction 

We also estimate the proposed approach based on 
the history of bug reports. The results of the cross-
product analysis suggest that the proposed 
approach outperforms state-of-the-art 
approaches. On average, it improves the f-
measure by 7.90. 
 

The proposed approach predicts the inflexibility 
of bug reports as follows: First, we value the 
history data of bug reports from open-source 
systems. Second, we preprocess the bug reports 
using natural language processing methods. 
Third, we cipher and assign an emotion score to 
each bug report. Fourth, we produce a vector 
(word embeddings) for each pre-processed bug 
report. Eventually, we train a deep literacy-rooted 
classifier for inflexibility vaticination. We input 
the emotion score and the vector of each bug 
report to the classifier for its inflexibility. 
 
We use the given illustration to illustrate how the 
proposed approach predicts the inflexibility of 
bug reports. It's a decline bug report(# 437094) 
collected from Bugzilla( 2). Product = ‘‘ ECP ’’ is 
the name of the affected product. Textual 
Information The EMFFilter must be streamlined 
to sludge out new models added to Luna, is the 
description of the bug report. It may contain 
details on how the bug can be regenerated. 
Inflexibility = ‘‘critical ’’ is the inflexibility of the 
bug report that indicates how snappily a bug 
report should be resolved. 
 
To answer the exploration question RQ1, we 
compare the proposed approach against EWD- 
Multinomial  and prognosticate in the inflexibility 
validation of bug reports. The cross- project 
confirmation results of the proposed approach, 
EWD-multinomial, and prognostic are presented. 
For each table, the first column presents the 
products. Columns 2–6 present the accuracy, 
perfection, recall, f-measure, and MCC of each 
approach (Table 1). 
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Table 1 Severity Prediction Report 

 
DUPLICATE BUG REPORT DETECTION AND 
CLASSIFICATION SYSTEM 

 
Duplicate bug report detection and classification 
systems are essential components of efficient 
software development and bug tracking processes. 
These systems are specifically designed to 
automatically identify and categorize bug reports 
that are duplicates, meaning they describe the same 
or very similar issues in a software application. 
Their primary objectives encompass several key 
aspects: 

 
Firstly, they focus on identifying duplicates, 
employing algorithms that analyse the textual 
content of bug reports, including their titles, 
descriptions, and any attached files or logs. This 
step is crucial in eliminating redundancy and 
ensuring that developers do not spend unnecessary 
time addressing the same issue repeatedly. 
Secondly, these systems aim to reduce redundancy 
by flagging or merging duplicate bug reports. This 
not only saves valuable developer time but also 
streamlines the bug tracking database, making it 
more organized and efficient to manage. 
Furthermore, they facilitate categorization of 
duplicate bug reports, assisting development teams 
in prioritizing and addressing issues based on 
their severity, priority, or other relevant criteria. 
This ensures that the most critical problems are 
dealt with promptly. Additionally, some systems 
can also automate user notification regarding 
duplicate reports, notifying users who submitted 
them about the duplication and providing 
transparency in the bug resolution process. These 
systems are not only tools for bug management but 
also valuable sources of data analysis. By analysing 
patterns of duplication, development teams can 
gain insights into recurring problems or areas of the 
software that require special attention, ultimately 
contributing to software quality improvement. 

Moreover, many of these systems incorporate 
advanced technologies like machine learning and 
natural language processing (NLP) to continuously 
enhance their accuracy. They learn from historical 
data, improving their ability to recognize 
duplicate reports over time. In summary, duplicate 
bug report detection and classification systems 
serve as indispensable assets in bug tracking, 
streamlining communication between users and 
developers, and ultimately elevating the quality 
and reliability of software products. The Figure 3.2 
denotes Duplicate Bug Report Detection and 
Classification System. 

 

 
Figure 6. Duplicate Bug Report Detection and 

Classification System 
 

The proposed system comprises of three modules: 
Preprocessing: The Figure 6 denotes Duplicate 
Bug Report Detection and Classification System. 
The basic aim of this module is to convert each 
term of the bug report into more manageable 
representation, remove the unwanted terms from 
the bug reports. Deep Learning Model: In this 
module deep learning-based model is proposed for 
extracting the semantic and syntactic relationship 
of words for the textual similarity measurement 
between bug reports. CNN based Feature 
Extraction Layer: CNN technique is used to extract 
the relevant features. It has various convolution 
filters that capture the local features and examines 
all words of the bug reports from multiple 
perspective. Similarity Measurement Layer: This 
layer contains similarity measurement metric, 
which compare the sentence representation of the 
bug reports. Fully Connected Layer: This layer 
computes the similarity score of the sentences of 
bug reports. Duplicate Bug report Detection and 
Classification: This module classifies the duplicate 
bug report from non-duplicate bug report based on 
the final decision based on the similarity scores. 
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The Figure 7 explains the Flowchart for Duplicate 
Bug Report Detection and Classification System. 
 
The experimental results of proposed system are 
demonstrated in this subsection. To predict the bug 
is duplicate or not, the proposed system based on 
deep learning model is used. The six datasets and 
five performance metrics are adopted to evaluate a 
performance of duplicate bug report detection and 
classification system as mentioned above. The 
proposed system adopted the binary classification 
schema. It can be seen that proposed system that 
proposed system effectively computes the accuracy, 
precision, recall and f-measure rates for each 
duplicate and non-duplicate bug report of each 
dataset. It can be seen from table, precision of 
proposed system for NetBeans, Eclipse, Open 
office, Gnome, Mozilla, Combined and Firefox 
datasets is 82.90%, 97.23%, 97.44%, 86.16%, 
98.70%, 94.35% and 8024% respectively. The recall 
rate of NetBeans, Mozilla, Eclipse, Open office, 
Gnome, Combined and Firefox datasets obtained by 
proposed system is 80.23%, 98.42%, 97.04%, 95.34%, 
and 83.35% 96.34% and 81.23% respectively. 
 

 
 

Figure 7 Flowchart for Duplicate Bug Report 
Detection and Classification System 

 
CONCLUSION 
 
This paper proposed a nature-based bug 
prediction component using an ensemble 
machine learning algorithm that consists of four 
base machine learning algorithms, Random 

Forest, Support Vector Classification, Logistic 
Regression, and Multinomial Naïve Bayes. The 
accuracy of the model is 90.42%. Moreover, it 
utilizes a text augmentation technique to 
increase accuracy. Therefore, the highest 
accuracy achieved by the proposed model 
increased to 96.72%. The proposed model 
predicts the nature of the bug from six bug 
categories, Program Anomaly, GUI, Network or 
Security, Configuration, Performance, and Test- 

 
 

Code. Future work will enhance this model by 
increasing the number of bug categories and 
recommending possible solutions for predicted 
bugs to reduce the maintenance time. 
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