

J. Sci. Trans. Environ. Technov. 2023, 17 (1) : 46 - 52

A REVIEW ON BUG REPORT CLASSFICATION USING MACHINE
LEARNING APPROACHES

P Janarthanan1*, S. Sreeram2 , S. Sherlin Shibi3, R. Shakthi4

1 Professor, Department of Computer Science and Engineering Sri Venkateswara College of Engineering
Sriperumbudur, Kanchipuram, TamilNadu, India. janap@svce.ac.in
2,3,4 Department of Computer Science and Engineering Sri Venkateswara College of Engineering Sriperumbudur,
Kanchipuram, TamilNadu, India.
janap@svce.ac.in ,sreeram2k03@gmail.com, shibi2114@gmail.com, shakthiravi810@gmail.com

Article History
 Received: 12.07.2023

 Revised and Accepted: 10.08.2023

 Published: 15.09.2023

ABSTRACT

Bug reports are crucial documents in software development, providing detailed information about
software issues, including descriptions, current status, and how severe they are. They are essential for
identifying and keeping track of software problems, which are essential for ensuring the overall quality
of software systems. When there are no unresolved bugs, it's a clear indicator that the software is reliable
and works smoothly. In recent years, machine learning has become increasingly skilled at classifying
different types of software bugs. One way it does this is by using ensemble machine learning models that
combine various tools like random forests, decision trees, and naive Bayes. Additionally, support vector
machines (SVM), decision trees (C4.5), and other classification methods have been used to better
understand and categorize bugs. This paper focuses on how machine learning can revolutionize bug
tracking, nature of bug, contributing to the ongoing conversation about making software more
dependable.

Keywords: Bug Reports, Machine Learning, Nature of Bug, Bug Tracking and Ensemble Machine
Learning.

 P Janarthanan

Department of Computer Science and Engineering

 Sri Venkateswara College of Engineering
Sriperumbudur, Kanchipuram, TamilNadu,
India.

 email : janap@svce.ac.in

P-ISSN 0973-9157

E-ISSN 2393-9249

46

INTRODUCTION

Software bugs are common issues that can
impact the functionality and reliability of software
applications (Jamil et al., 2016). Timely identification
and management of these bugs are crucial for
ensuring the quality of software products (Wen,
2017). To address this challenge, machine learning
techniques have been increasingly applied to predict
and manage software bugs (Ramay et al., 2019). In
this context, a Nature-Based Prediction Model of Bug
Reports based on an Ensemble Machine Learning
Model represents a sophisticated approach to
improve the accuracy and effectiveness of bug

https://doi.org/10.56343/STET.116.017.001.007

www.stetjournals.com

mailto:janap@svce.ac.in
mailto:sreeram2k03@gmail.com
mailto:shibi2114@gmail.com,
mailto:shakthiravi810@gmail.com
mailto:janap@svce.ac.in
http://www.stetjournals.com/

J. Sci. Trans. Environ. Technov.2023 47

prediction (Polpinij, 2021). Common types of
software bugs are functional Bugs, user interface (UI)
Bugs, compatibility issues, and performance issues
(Adhikarla, 2020).

The nature-based prediction model of bug reports
based on ensemble machine learning model is a new
approach to automatically classify bug reports into
different categories such as configuration, network
or security, GUI, Program Anomaly, Performance,
Test Code (Safdari et al., 2019). F1 score for each class
is shown in fig.1 It uses a combination of natural
language processing (NLP) and machine learning
techniques to extract features from the bug reports
and then classify them using an ensemble of machine
learning models (Kukkar et al., 2019). Refer Figure 1
for F1 scores of Bug classes.

Figure.1 F1 scores for Bug classes

The NLP techniques are used to extract features
from the text of the bug reports, such as the
words and phrases used, the sentiment of the
text, and the grammatical structures. The
machine learning models are then used to
classify the bug reports based on these features.
The ensemble machine learning model is a
combination of different machine learning
models, such as decision trees, support vector
machines, and random forests.

This combination of models helps to improve the
accuracy of the classification. The nature-based
prediction model of bug reports has been shown
to be effective in classifying bug reports into
different categories. In a study, the model was
able to achieve an accuracy of 90.42% without
text augmentation and 96.72% with text
augmentation.

The nature-based prediction model of bug
reports is a promising new approach to
automatically classify bug reports. It can help to
reduce the time and effort required to manually
classify bug reports, and it can also help to
improve the accuracy of the classification.

The nature-based prediction model of bug
reports offers a multitude of advantages to
software development and testing processes.
One of its key benefits lies in its ability to
significantly reduce the time and effort needed
for the manual classification of bug reports. This
streamlined classification process not only saves
valuable resources but also enhances the
accuracy of bug categorization, ensuring that
issues are properly identified and addressed.
Furthermore, this model's capacity to recognize
patterns within bug reports holds immense
potential for improving the overall software
development process. By discerning recurring
issues or common threads among reported bugs,
developers can proactively address underlying
problems and enhance the software's overall
quality.

This predictive capability also aids in prioritizing
bug reports, enabling teams to focus their
attention on critical issues that require
immediate resolution. In essence, the nature-
based prediction model for bug reports stands as
a valuable tool for both software developers and
testers. Its implementation leads to quicker and
more efficient bug identification and resolution,
ultimately resulting in a higher-quality software
product. This is exemplified in Figure 2, which
showcases an illustrative example of a bug
report.

 Figure.2. Example of Bug

48 J. Sci. Trans. Environ. Technov.2023

MACHINE LEARNING TECHNIQUES

ML is sub-area of Artificial Intelligence and has the
ability of a machine to learn by themselves with a
large number of datasets. It uses the statistical and
mathematical approach to solve the problem.
Currently, the areas where neural networks are
Signal Processing, Pattern Recognition, Medicine,
Speech Production and Speech Recognition. ML
enables the system to recognize patterns based on
present and past data. Every dataset is described
with several features. Each sample is pre-
processed to remove the unnecessary noise,
outliers and there will be chances of data missing
which can decrease the quality of resultant
prediction. Then, slice the dataset is classified into
two phases (1) Training phase, (2) Testing phase. In
the training phase, the data is split in the ratio
80:20. A major part of the data is made to train the
system to result in greater accuracy. In the testing
phase, the system is tested based on trained data.
The testing must meet the following conditions
Large enough to yield statistically meaningful
results.ML algorithms are classified into
Supervised Learning, Unsupervised Learning.
Supervised learning involves what has been
learned in the past using labelled samples to
predict the future. A supervised learning
algorithm analyses the training data and
produces inferred function which can be used for
mapping new samples. The Naïve Bayes classifier
is one of the supervised learning approaches which
are a probabilistic machine learning technique for
classification purpose. It assumes the presence of a
particular feature in a class is unrelated to the
presence of any other feature. Classification can be
performed using eqn.

P(A|B)= P(A|B)∗P(A)/p(B) -(1)

Where A and B are events and P(A) expressed as
Marginal likelihood, P(B) expressed as prior
Probability, P(A|B) denotes Likelihood. It is
scalable and a great choice for real-world
applications. Fig.3 explains the classification
between Age and Estimated salary. The outliers
are removed to make a better prediction. In our
case, age is the independent variable and estimated
salary is considered as the dependent variable.
The GaussianNB function is invoked to classify
the given data. The other supervised algorithms

are Decision Tree (DT), Polynomial Regression,
Random Forest, Support Vector Machine etc.; from
the feature extracted from the image it is easy to
classify the presence of cancer using Support
Vector Machine (SVM) [15]. Classification between

Age and Salary is shown fig.3.
Figure 3. Classification between Age and

Salary

ALGORITHM

Input: Dataset N after Binary Conversion.
Output: Presence of Tumor Cells

1) Reading the training dataset N.
2) Calculate the Dimensionality and Geometry

of the particular Organ.

3) Repeat until the probability of the function

using Gauss density equation in each class

until the probability of all predicator value.

4) Calculate the likelihood of each class.
5) Get the greatest likelihood

Unsupervised learning is the task of machines to
learn using data sets with no specified structure.
Two methods used in unsupervised learning such
as Principal Component Analysis and Clustering.
Cluster is also the sub-area of ML which can cluster
the data to be classified. Clustering is a powerful
technique used to organize the data based on
similarity in the dataset. The unsupervised
learning algorithms include K-Means clustering,
Hierarchical clustering etc. Though unsupervised
learning helps to identify the patterns, the ability to
extract the compressed representation accurately
may still need to be tested to determine the
appropriateness of the implementation (Wen,
2017). In fig.3 the left diagram represents how the
data points are plotted and the other explains how

J. Sci. Trans. Environ. Technov.2023 49

the plotted data points are clustered into 3 major
categories. Example of clustering is shown in fig.4.

Figure 4. Clustering

MACHINE LEARNING APPLICATIONS
Machine Learning (ML) applications on bug reports
have gained prominence in software development
and quality assurance processes. ML techniques are
leveraged to streamline bug management, prioritize
bug fixes, and enhance overall software quality.

SEVERITY PREDICTION OF BUG REPORTS
Developers employ issue tracking systems to collect
bugs for software enhancement. druggies submit
bugs through similar issue tracking systems and
decide the inflexibility of reported bugs. The
inflexibility of a bug is an important trait that
determines how snappily it should be answered. It
helps inventors break important bugs on time. still,
homemade inflexibility assessment is a tedious job
and could be incorrect. To this end, in this paper, we
propose a deep neural network- grounded automatic
approach for the inflexibility vaticination of bug
reports. First, we apply natural language processing
ways for the textbook preprocessing of bug reports.
Second, we cipher and assign an emotion score for
each bug report. Third, we produce a vector for each
pre- processed bug report. Fourth, we pass the
constructed vector and the emotion score of each bug
report to a deep neural network- grounded classifier
for inflexibility vaticination. An overview of the deep
neural network-based severity prediction of bug
reports is presented in the below Figure 5.

 Figure. 5. Severity Prediction

We also estimate the proposed approach based on
the history of bug reports. The results of the cross-
product analysis suggest that the proposed
approach outperforms state-of-the-art
approaches. On average, it improves the f-
measure by 7.90.

The proposed approach predicts the inflexibility
of bug reports as follows: First, we value the
history data of bug reports from open-source
systems. Second, we preprocess the bug reports
using natural language processing methods.
Third, we cipher and assign an emotion score to
each bug report. Fourth, we produce a vector
(word embeddings) for each pre-processed bug
report. Eventually, we train a deep literacy-rooted
classifier for inflexibility vaticination. We input
the emotion score and the vector of each bug
report to the classifier for its inflexibility.

We use the given illustration to illustrate how the
proposed approach predicts the inflexibility of
bug reports. It's a decline bug report(# 437094)
collected from Bugzilla(2). Product = ‘‘ ECP ’’ is
the name of the affected product. Textual
Information The EMFFilter must be streamlined
to sludge out new models added to Luna, is the
description of the bug report. It may contain
details on how the bug can be regenerated.
Inflexibility = ‘‘critical ’’ is the inflexibility of the
bug report that indicates how snappily a bug
report should be resolved.

To answer the exploration question RQ1, we
compare the proposed approach against EWD-
Multinomial and prognosticate in the inflexibility
validation of bug reports. The cross- project
confirmation results of the proposed approach,
EWD-multinomial, and prognostic are presented.
For each table, the first column presents the
products. Columns 2–6 present the accuracy,
perfection, recall, f-measure, and MCC of each
approach (Table 1).

50 J. Sci. Trans. Environ. Technov.2023

Table 1 Severity Prediction Report

DUPLICATE BUG REPORT DETECTION AND
CLASSIFICATION SYSTEM

Duplicate bug report detection and classification
systems are essential components of efficient
software development and bug tracking processes.
These systems are specifically designed to
automatically identify and categorize bug reports
that are duplicates, meaning they describe the same
or very similar issues in a software application.
Their primary objectives encompass several key
aspects:

Firstly, they focus on identifying duplicates,
employing algorithms that analyse the textual
content of bug reports, including their titles,
descriptions, and any attached files or logs. This
step is crucial in eliminating redundancy and
ensuring that developers do not spend unnecessary
time addressing the same issue repeatedly.
Secondly, these systems aim to reduce redundancy
by flagging or merging duplicate bug reports. This
not only saves valuable developer time but also
streamlines the bug tracking database, making it
more organized and efficient to manage.
Furthermore, they facilitate categorization of
duplicate bug reports, assisting development teams
in prioritizing and addressing issues based on
their severity, priority, or other relevant criteria.
This ensures that the most critical problems are
dealt with promptly. Additionally, some systems
can also automate user notification regarding
duplicate reports, notifying users who submitted
them about the duplication and providing
transparency in the bug resolution process. These
systems are not only tools for bug management but
also valuable sources of data analysis. By analysing
patterns of duplication, development teams can
gain insights into recurring problems or areas of the
software that require special attention, ultimately
contributing to software quality improvement.

Moreover, many of these systems incorporate
advanced technologies like machine learning and
natural language processing (NLP) to continuously
enhance their accuracy. They learn from historical
data, improving their ability to recognize
duplicate reports over time. In summary, duplicate
bug report detection and classification systems
serve as indispensable assets in bug tracking,
streamlining communication between users and
developers, and ultimately elevating the quality
and reliability of software products. The Figure 3.2
denotes Duplicate Bug Report Detection and
Classification System.

Figure 6. Duplicate Bug Report Detection and

Classification System

The proposed system comprises of three modules:
Preprocessing: The Figure 6 denotes Duplicate
Bug Report Detection and Classification System.
The basic aim of this module is to convert each
term of the bug report into more manageable
representation, remove the unwanted terms from
the bug reports. Deep Learning Model: In this
module deep learning-based model is proposed for
extracting the semantic and syntactic relationship
of words for the textual similarity measurement
between bug reports. CNN based Feature
Extraction Layer: CNN technique is used to extract
the relevant features. It has various convolution
filters that capture the local features and examines
all words of the bug reports from multiple
perspective. Similarity Measurement Layer: This
layer contains similarity measurement metric,
which compare the sentence representation of the
bug reports. Fully Connected Layer: This layer
computes the similarity score of the sentences of
bug reports. Duplicate Bug report Detection and
Classification: This module classifies the duplicate
bug report from non-duplicate bug report based on
the final decision based on the similarity scores.

J. Sci. Trans. Environ. Technov.2023 51

The Figure 7 explains the Flowchart for Duplicate
Bug Report Detection and Classification System.

The experimental results of proposed system are
demonstrated in this subsection. To predict the bug
is duplicate or not, the proposed system based on
deep learning model is used. The six datasets and
five performance metrics are adopted to evaluate a
performance of duplicate bug report detection and
classification system as mentioned above. The
proposed system adopted the binary classification
schema. It can be seen that proposed system that
proposed system effectively computes the accuracy,
precision, recall and f-measure rates for each
duplicate and non-duplicate bug report of each
dataset. It can be seen from table, precision of
proposed system for NetBeans, Eclipse, Open
office, Gnome, Mozilla, Combined and Firefox
datasets is 82.90%, 97.23%, 97.44%, 86.16%,
98.70%, 94.35% and 8024% respectively. The recall
rate of NetBeans, Mozilla, Eclipse, Open office,
Gnome, Combined and Firefox datasets obtained by
proposed system is 80.23%, 98.42%, 97.04%, 95.34%,
and 83.35% 96.34% and 81.23% respectively.

Figure 7 Flowchart for Duplicate Bug Report
Detection and Classification System

CONCLUSION

This paper proposed a nature-based bug
prediction component using an ensemble
machine learning algorithm that consists of four
base machine learning algorithms, Random

Forest, Support Vector Classification, Logistic
Regression, and Multinomial Naïve Bayes. The
accuracy of the model is 90.42%. Moreover, it
utilizes a text augmentation technique to
increase accuracy. Therefore, the highest
accuracy achieved by the proposed model
increased to 96.72%. The proposed model
predicts the nature of the bug from six bug
categories, Program Anomaly, GUI, Network or
Security, Configuration, Performance, and Test-

Code. Future work will enhance this model by
increasing the number of bug categories and
recommending possible solutions for predicted
bugs to reduce the maintenance time.

REFERENCES

Adhikarla S., 2020, ''Automated bug

classification. Bug report
routing,''M.S. thesis, Fac. Arts Sci.,
Dept. Comput. Inf. Sci., Linköping
Univ., Linköping", Sweden.

Aggarwal. A, 2020, Types of Bugs in Software

Testing Classifications with
Examples".

Jamil M. A., Arif M., Abubakar N. S. A., and

Ahmad A., 2016, '', Software testing
techniques: A literature review''. in
Proc. 6th Int. Conf. Inf. Commun.
Technol. Muslim World (ICT4M),
177-182,
https://doi.org/10.1109/ICT4M.20
16.045

Kukkar A., Mohana R., Nayyar A., Kim J.,

Kang B.G., and Chilamkurti N., 2019,
''A novel deep- learning-based bug
severity classification technique
using convolutional neural networks
and random forest with boosting'',
Sensors,19(13), pp. 2964.
https://doi.org/10.3390/s19132964
PMid:31284398 PMCid:PMC6651582

https://doi.org/10.1109/ICT4M.2016.045
https://doi.org/10.1109/ICT4M.2016.045
https://doi.org/10.3390/s19132964

52 J. Sci. Trans. Environ. Technov.2023

Kukkar A. and Mohana R., 2018, ''A supervised
bug report classification with
Incorporate and Textual Field
Knowledge", Proc. Comput. Sci., vol. 132,
pp. 352-361.
https://doi.org/10.1016/j.procs.2018.0
5.194

 Morrison P. J., Pandita R., Xiao X., Chillarege R.,

and Williams L., 2018, ''Are
vulnerabilities discovered and resolved
like other defects?, Empirical Software
Eng.", 23(3), pp. 1383- 1421.
https://doi.org/10.1007/s10664-017-
9541-1

Otoom A. F., Al-jdaeh S., and Hammad M., 2019,

''Automated classification of software bug
reports",in Proc. 9th Int. Conf. Inf. Commun.
Manage., pp. 17-21.
https://doi.org/10.1145/3357419.3357424

Polpinij, 2021, ''A method of non-bug report

identification from bug report repository",
Artif. Life Robot. 26(3), pp. 318-328.
https://doi.org/10.1007/s10015-021-
00681-3

Ramay W. Y., Umer Q., Yin X. C., Zhu C., and Illahi

I., 2019, ''Deep neural network-based
severity prediction of bug reports'', IEEE
Access, 7, pp. 46846-46857.
https://doi.org/10.1109/ACCESS.2019.29
09746

Safdari N., Alrubaye H., Aljedaani W., Baez B. B.,
DiStasi A., and Mkaouer M. W., 2019,
''Learning to rank faulty source files for
dependent bug reports'', in Proc. SPIE,
10989.
https://doi.org/10.1117/12.2519226

Wen W., 2017. ''Using natural language processing

and machine learning techniques to
characterize configuration bug reports",
M.S. thesis, College Eng., Univ. Kentucky,
Lexington, KY, USA.

Youm K. C., Ahn J., and Lee E., 2017, ''Improved bug

localization based on code change histories
and bug reports", Inf. Softw. Technol., 82,
pp. 177-192, 2017.
https://doi.org/10.1016/j.infsof.2016.11.0
02

https://doi.org/10.1016/j.procs.2018.05.194
https://doi.org/10.1016/j.procs.2018.05.194
https://doi.org/10.1007/s10664-017-9541-1
https://doi.org/10.1007/s10664-017-9541-1
https://doi.org/10.1145/3357419.3357424
https://doi.org/10.1007/s10015-021-00681-3
https://doi.org/10.1007/s10015-021-00681-3
https://doi.org/10.1109/ACCESS.2019.2909746
https://doi.org/10.1109/ACCESS.2019.2909746
https://doi.org/10.1117/12.2519226
https://doi.org/10.1016/j.infsof.2016.11.002
https://doi.org/10.1016/j.infsof.2016.11.002

